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Abstract This paper addresses the general continuous single facility location prob-
lems in finite dimension spaces under possibly different �τ norms, τ ≥ 1, in the
demand points. We analyze the difficulty of this family of problems and revisit con-
vergence properties of some well-known algorithms. The ultimate goal is to provide
a common approach to solve the family of continuous �τ ordered median location
problems Nickel and Puerto (Facility location: a unified approach, 2005) in dimen-
sion d (including of course the �τ minisum or Fermat-Weber location problem for
any τ ≥ 1). We prove that this approach has a polynomial worst case complexity for
monotone lambda weights and can be also applied to constrained and even non-convex
problems.
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1 Introduction

Location analysis is a very active topic within the operations research community.
It has giving rise to a number of nowadays standard optimization problems some of
them in the core of modern mathematical programming. One of its branches is contin-
uous location, a family of models directly related to important areas of mathematics
such as linear and non-linear programming, convex analysis and global optimization
(see e.g. [20] and the references therein). It is widely agreed that modern continuous
location started with the paper by Weber [54] who first considers the minimization of
weighted sums of distances as an economical goal to locate industries. This problem
is currently known as Fermat–Weber, also because of the three points Fermat problem
(s. XVII) firstly solved by Torricelli in 1659. The algorithmic part of this history starts
at 1937 with the paper by Weiszfeld [55] who proposed an iterative gradient type algo-
rithm to find or to approximate the solutions of the above mentioned Fermat-Weber
problem.

For several decades this algorithm remains forgotten but in 1973 Kuhn [29] redis-
covered it and proved its convergence, under some conditions, in the Euclidean case.
1 year later Katz [30] gives another convergence result. Several years later, a number
of authors considered the weighted minisum problem under different norms mainly
�τ or polyhedral (see e.g. [20] for a detailed literature review) and Chandrasekaran
and Tamir [12] raise several interesting questions concerning resolubility of Weiszfeld
algorithm. Eventually, starting in the nineties, several authors were very interested in
proving the convergence of some modifications of the Weiszfeld algorithm, usually
called modified Weiszfeld or generalized iterative procedure for minisum location
problems.

The convergence for Euclidean distances (τ = 2) was studied later by [29,30],
among others. Since then, we can find in the literature many references concerning
this algorithm, as for instance the generalization to �τ distances with τ ∈ [1, 2] [39]
or the analysis of its local and global convergence [4–6,10]. Also, these results were
extended to more general problems: on Banach spaces [23,45,46], on the sphere
[56], with regional demand [13,52], with sets as demand facilities and using closest
Euclidean distances [7] or with radial distances [14–16,31,40]. In addition, one can
find in the literature papers where the convergence is accelerated using alternative step
sizes [17,18,25,30,43] or some related properties concerning the termination of the
algorithm in any of the demand points after a finite number of iterations [6,8,9,11,12,
29].

The influence of Weiszfeld algorithm in Location Analysis has been rather impor-
tant very likely due to its very easy implementation. For several years, it was a very
effective method to solve minisum continuous location problems, even though its theo-
retical convergence was not proven. Thus, locators have devoted a lot of effort to prove
its convergence. The global convergence result of this algorithm for �τ , τ ∈ [1, 2],
was proved in [5] and recently [50] has given a proof to close the cases (τ > 2) that
were not yet justified. This has been an important effort from a mathematical point
of view. Nevertheless, pursuing this goal locators did not focus on the origin of the
problem, namely to search for alternative, efficient algorithms to solve the �τ minisum
and some more general families of location problems.
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The situation is even harder if we consider a more general family of location prob-
lems that have attracted a lot of attention in the field in the last years, namely continuous
ordered median location problems [42]. Ordered median problems represent as special
cases nearly all classical objective functions in location theory, including the Median,
CentDian, center and k-centra. More precisely, the 1-facility ordered median problem
can be formulated as follows: A vector of weights (λ1, . . . , λn) is given. The problem
is to find a location for a facility that minimizes the weighted sum of distances where
the distance to the closest point to the facility is multiplied by the weight λn , the dis-
tance to the second closest, by λn−1, and so on. The distance to the farthest point is
multiplied by λ1. Many location problems can be formulated as the ordered 1-median
problem by selecting appropriate weights. For example, the vector for which all λi = 1
is the unweighted 1-median problem, the problem where λ1 = 1 and all others are
equal to zero is the 1-center problem, the problem where λ1 = . . . = λk = 1 and all
others are equal to zero is the k-centrum. Minimizing the range of distances is achieved
by λ1 = 1, λn = −1 and all others are zero. Despite its full generality, the main draw-
back of this framework is the difficulty of solving the problems with a unified tool.
There have been some successful approaches that are now available whenever the
framework space is either discrete (see [3,37]) or a network (see [27,28,41] or [47]).
Nevertheless, the continuous case has been, so far, only partially covered even under
the additional hypothesis of convexity. There have been some attempts to overcome
this drawback and there are nowadays some available methodologies to tackle these
problems, at least in the plane and with Euclidean norm. In Drezner [19] and Drezner
and Nickel [21,22] the authors present two different approaches. The first one uses a
geometric branch and bound method based on triangulations (BTST) and the second
one on a D-C decomposition for the objective function that allow solving problems
on the plane. Espejo et al. [24] also address the unconstrained convex ordered median
location problem on the plane and Rodriguez-Chia et al. [49] attacks the k-centrum
problem using geometric arguments and developing a better algorithm applicable only
for that unconstrained problem on the plane and Euclidean distances. More recently,
Blanco et al. [2] have presented a new methodology based on a hierarchy of SDP
relaxations that can be used to solve (approximate) the optimal solutions of the gen-
eral ordered median location problems which main drawback is the size of the SDP
objects that have to be used to get good accuracy in high dimension.

The above discussion points out that there exists a lack of a unified resolution
approach to those problems as well as effective algorithms for the general cases. Our
goal in this paper is to design a common approach to solve the family of continuous
�τ , for τ ≥ 1, ordered median location problems in dimension d (including of course
the �τ minisum or Fermat-Weber location problem for any τ ≥ 1). We prove that this
approach has a polynomial worst case complexity for monotone lambda weights and
can be also applied to constrained problems and to approximate even non-convex
problems. Thus, providing a unifying new algorithmic paradigm for this class of
location problems. First, for convex location problems it avoids the drawback of limit
convergence proven for the Weiszfeld type algorithms. Then, it can be applied to any
convex ordered median problem, even with mixed norms, in any dimension and with
rather general convex constraints. Moreover, we show an explicit reformulation of
these problems as SDP problems which enables the usage of standard free source
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solvers (SeDuMi, SDPT3,...) to solve them up to any degree of accuracy. Finally, we
also show how to adapt this approach to approximate up to any degree of accuracy
non-convex constrained location problems using a hierarchy of convergent relaxed
problems following the rationale of [2].

The paper is organized in 5 sections. In Sect. 2 we provide a compact represen-
tation, valid for any unconstrained convex ordered location problem, by means of a
new formulation that reduces these problems to semidefinite problems. This approach
allows us to ensure that all these problems are polynomially solvable in finite dimen-
sion. We also present a new linear programming formulation for this problem for the
norm �1. Section 3 is devoted to extend the results of Sect. 2 to the case of constrained
problems under the condition of SDP-representability. Then, we handle the general
case of non-convex constrained ordered median location problem for which we con-
struct a hierarchy of SDP relaxations that converges to the optimal solution of the
original problem. Our Sect. 4 is devoted to the computational experiments. We report
results in four different problem types, namely minisum (Weber), minimax (center),
k-centrum (minimizing the sum of the k-largest distances) and general ordered median
problems. In this section we also compare our results with those obtained for the cases
that have been previously reported in the literature. The paper ends, in Sect. 5, with
some conclusions and an outlook for further research.

2 A compact representation of the convex ordered median problem

In this section we present the convex ordered median problem in dimension d where
the distances are measured with a general �τ -norm being τ ≥ 1 and τ ∈ Q. Recall that
the �τ -norm of a vector x ∈ Rd is defined as ‖x‖τ = (

∑d
j=1 |x j |τ )1/τ . We are given a

set of demand points S = {a1, ..., an} and two sets of scalars � := {ω1, ..., ωn}, ωi ≥
0, ∀ i ∈ {1, . . . , n} and � := {λ1, ..., λn} where λ1 ≥ ... ≥ λn ≥ 0. The elements
ωi are weights corresponding to the importance given to the existing facilities ai , i ∈
{1, ..., n} and depending on the choice of the elements of � we get different classes
of problems. We denote by Pn the set of permutations of the first n natural numbers.

Given a permutation σ ∈ Pn satisfying

ωσ(1)‖x − aσ(1)‖τ ≥ . . . ≥ ωσ(n)‖x − aσ(n)‖τ ,

the unconstrained ordered median problem (see [42]) consists of

min
x∈Rd

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ . (1)

The reader may note that the representation of the above problem depends on the
permutation σ that sorts the distances from the demand points ai to the solution point
x . This implies that it is not linear over the entire space Rd since each time that the
ordering of the elements of the vector of distances, (ωi‖x −ai‖τ )

n
i=1, changes so does

the allocation of these elements to the lambda coefficients, and therefore the repre-
sentation of the function. In particular, this fact makes the objective function to be
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non-differentiable over the boundary of ordered regions (see [42,44]). An important
consequence of the above discussion is that one cannot apply unconstrained optimiza-
tion (gradient type) methods to solve Problem (1).

Moreover, if the lambda weights are not sorted in non-increasing sequence the
problem is not convex and therefore, it becomes hard since it includes, among others,
general instances of concave minimization, which are well-known to be NP-hard.
Nevertheless, even in the case of non-increasing monotone lambda the problem is not
easy due to its lack of easy representability. Witness of its difficulty is the fact that so
far, it has been solved, in the specialized literature of Location Analysis, only in the
plane [21,24].

In order to address the resolution of the problem that we present in this paper
we need to restate the problem in a lifted space of variables that allows a unified
representation as a constrained optimization problem. We start by showing a compact
reformulation of the above problem that will be later useful in our approach.

Theorem 1 Let τ = r
s ≥ 1 be such that r, s ∈ N \ {0}, r > s and gcd(r, s) = 1. For

any set of lambda weights satisfying λ1 ≥ ... ≥ λn, Problem (1) is equivalent to

min
n∑

k=1

vk +
n∑

i=1

wi (2)

s.t vi + wk ≥ λk zi , ∀i, k = 1, ..., n, (3)

yi j − x j + ai j ≥ 0, i = 1, . . . , n, j = 1, ..., d, (4)

yi j + x j − ai j ≥ 0, i = 1, . . . , n, j = 1, ..., d, (5)

yr
i j ≤ us

i j z
r−s
i , i = 1, . . . , n, j = 1, ..., d, , (6)

ω
r
s
i

d∑

j=1

ui j ≤ zi , i = 1, . . . , n, (7)

ui j ≥ 0, i = 1, . . . , n, j = 1, . . . , d. (8)

Proof Because of the condition λ1 ≥ ... ≥ λn , Problem (1) can be equivalently written
as

min
x∈Rd

max
σ∈Pn

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ , (9)

Let us introduce auxiliary variables zi , i = 1, . . . , n to which we impose that
zi ≥ ωi‖x−ai‖τ , to model the problem in a convenient form. Now, for any permutation
σ ∈ Pn , let zσ = (zσ(1), . . . , zσ(n)). Moreover, let us denote by (·) the permutation
that sorts any vector in nonincreasing sequence, i.e. z(1) ≥ z(2) ≥ . . . ≥ z(n). Using
that λ1 ≥ ... ≥ λn and since zi ≥ 0, for all i = 1, . . . , n then

n∑

i=1

λi z(i) = max
σ∈Pn

n∑

i=1

λi zσ(i).
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The permutations in Pn can be represented by the following set of equations with
binary variables pik :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

pik = 1, ∀k = 1, ..., n,

n∑

k=1

pik = 1, ∀i = 1, ..., n,

where pik =
{

1, if zi goes in position k,

0, otherwise.

Next, combining the two sets of variables we obtain that the objective function of
(9) can be equivalently written as::

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

λi z(i) = max
n∑

i=1

n∑

k=1

λk zi pik

s.t
n∑

i=1

pik = 1, ∀k = 1, ..., n,

n∑

k=1

pik = 1, ∀i = 1, ..., n,

pik ∈ {0, 1}.

(10)

Now, we point out that for fixed z1, ..., zn , the above problem is an assignment problem
and its constraint matrix is totally unimodular, so that solving a continuous relaxation
of the problem always yields an integral solution vector (see [1]), and thus a valid
permutation. Moreover, the dual of the linear programming relaxation of (10) is strong
and also gives the value of the original binary formulation of (10).

Hence, for any vector z ∈ Rn , by using the dual of the assignment problem (10)
we obtain the following equivalent expression for (9)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
n∑

k=1

vk +
n∑

i=1

wi

s.t vi + wk ≥ λk zi , ∀i, k = 1, ..., n,

zi ≥ ωi‖x − ai‖τ , i = 1, ..., n.

(11)

It remains to prove that each inequality zi ≥ ωi‖x − ai‖τ , i = 1, ..., n can be
replaced by the system:

yi j − x j + ai j ≥ 0, j = 1, ..., d.

yi j + x j − ai j ≥ 0, j = 1, ..., d.

yr
i j ≤ us

i j z
r−s
i , j = 1, ..., d.

ω
r
s
i

d∑

j=1

ui j ≤ zi ,

ui j ≥ 0, ∀ j = 1, . . . , d.
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Indeed, set ρ = r
r−s , then 1

ρ
+ s

r = 1. Let (x̄, z̄i ) fulfill the inequality zi ≥
ωi‖x − ai‖τ . Then we have

ωi‖x̄ − ai‖τ ≤ z̄i ⇐⇒ ωi

⎛

⎝
d∑

j=1

|x̄ j − ai j | r
s

⎞

⎠

s
r

≤ z̄
s
r
i z̄

1
ρ

i

⇐⇒ ωi

⎛

⎝
d∑

j=1

|x̄ j − ai j | r
s z̄

r
s (− r−s

r )

i

⎞

⎠

s
r

≤ z̄
s
r
i

⇐⇒ ω
r
s
i

d∑

j=1

|x̄ j − ai j | r
s z̄

− r−s
s

i ≤ z̄i (12)

Then (12) holds if and only if ∃ui ∈ Rd , ui j ≥ 0, ∀ j = 1, ..., d such that

|x̄ j − ai j | r
s z̄

− r−s
s

i ≤ ui j , satisfying ω
r
s
i

d∑

j=1

ui j ≤ z̄i ,

or equivalently,

|x̄ j − ai j |r ≤ us
i j z̄

r−s
i , ω

r
s
i

d∑

j=1

ui j ≤ z̄i . (13)

Set ȳi j = |x̄ j − ai j | and ūi j = |x̄ j − ai j |τ z̄−1/ρ
i . Then, clearly (x̄, z̄i , ȳ, ū) satisfies

(4)–(8).
Conversely, let (x̄, z̄i , ȳ, ū) be a feasible solution of (4)–(8). Then, ȳi j ≥ |x̄i j −ai j |

for all i, j and by (6) ūi j ≥ ȳ(r/s)
i j z

− r−s
s

i ≥ |x̄ j − ai j |τ z̄
− r−s

s
i . Thus,

ω
r/s
i

d∑

j=1

|x̄ j − ai j |r/s z̄
− r−s

s
i ≤ ω

r/s
i

d∑

j=1

ūi j ≤ z̄i ,

which in turns implies that ωr/s
i

∑d
j=1 |x̄ j −ai j |r/s ≤ z̄i z̄

r−s
s

i and hence, ωi‖x̄ −ai‖ ≤
z̄i . 
�

Problem (2)–(8) is an exact representation of Problem (1) in any dimension and for
any �τ -norm, τ ≥ 1.

For the case τ = 1, the above problem reduces to a linear programming problem.
We observe that even though for the case τ = 1, it was known that these problems
reduce to linear programming [42], the formulation below is new and different from
those presented in the literature [28,42].
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Corollary 1 If τ = 1 the reformulation given by Problem (1) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

k=1

vk +
n∑

i=1

wi

s.t vi + wk ≥ λk zi , ∀i, k = 1, ..., n,

zi ≥ ωi

d∑

j=1
ui j , i = 1, ..., n,

x j − ai j ≤ ui j i = 1, ..., n, j = 1, . . . , d,

−x j + ai j ≤ ui j i = 1, ..., n, j = 1, . . . , d.

(14)

The reader may observe that the representation given in Theorem 1 is new and
different from the one used in [2]. On the one hand, this new formulation is more
efficient than the one presented in [2] and specially tailored for the case of non-
increasing monotone lambda weights, see e.g. [2, Lemma 8]. For the sake of readability
we include it in the following.

Let

Sk(x) :=
k∑

j=1

z( j), (15)

where z( j) is such that z(1) ≥ . . . ≥ z(n). That formulation applied to the setting of
this paper reads as:

min
∑n

k=1(λk − λk+1)Sk(x) (16)

tk + rk j ≥ z j (x), j, k = 1, . . . , n,

rk j ≥ 0, j, k = 1, . . . , n,

z j ≥ ω j‖x − a j‖τ , j = 1, ..., n.

It is easy to see that formulation (16) has O(n2 +d) variables and O(n2) constraints
whereas the new one written in similar terms as presented in (11) has O(n+d) variables
and O(n2) constraints.

Our goal is to show that for any τ > 1, τ ∈ Q, Problem (2)–(8) also admits a
compact formulation within another easy class of polynomially solvable mathematical
programming problems: Semidefinite Programming Problems. In order to get that we
need to prove a technical lemma. Let #A denote the cardinality of the set A.

Lemma 1 Let τ = r
s > 1, τ �= 2 be such that r, s ∈ N \ {0} and gcd(r, s) = 1.

Let x, u and t be non negative and satisfying

xr ≤ ustr−s . (17)

Assume that 2k−1 < r ≤ 2k where k ∈ N \ {0} such that

x2k ≤ ustr−s x2k−r , (18)
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and

s = αk−12k−1 + αk−22k−2 + . . . + α121 + α020, (19)

r − s = βk−12k−1 + βk−22k−2 + . . . + β121 + β020, (20)

2k − r = γk−12k−1 + γk−22k−2 + . . . + γ121 + γ020, (21)

where αi , βi , γi ∈ {0, 1}.
Then, if (x, t, u) is a feasible solution of (17) there exists w such that either

1. (x, t, u, w) is a solution of System (22), if αi +βi + γi = 1, for all 0 < i ≤ k − 1.

⎧
⎨

⎩

w2
1 ≤ uα0 tβ0 xγ0 ,

w2
i+1 ≤ wi uαi tβi xγi , i = 1, . . . , k − 2

x2 ≤ wk−1uαk−1 tβk−1 xγk−1 ,

(22)

2. Let c = #{i : αi + βi + γi = 3, i = 2, ..., k − 2}, (x, t, u, w) is a solution of
System (23), if there exist i j and il( j), j = 1, . . . , c such that:
1. 0 < i1 < i2 < . . . < ic ≤ k − 2,
2. i j < il( j) < i j+1,
3. αi j + βi j + γi j = 3, αil( j) + βil( j) + γil( j) = 0 and αh + βh + γh = 2 for

h = i j + 1, . . . , il( j)−1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2
1 ≤ uα0 tβ0 xγ0 ,

w2
i+1 ≤ wi uαi tβi xγi , i ∈ {1, . . . , i1 − 1}

− − − − − − − − for each j = 1, . . . , c − − − − − − − −−
w2

θ( j) ≤ ut,
w2

θ( j)+1 ≤ wθ( j)−1x

w2
θ( j)+2∗s ≤ wθ( j)+2(s−1)ai j +s

w2
θ( j)+2∗s+1 ≤ wθ( j)+2s−1bi j +s

}

,
s = 1, . . . , il( j) − i j − 1 and

ai j +s + bi j +s = uαi j +s tβi j +s xγi j +s ,

w2
θ( j)+2(il( j)−i j )

≤ wθ( j)+2(il( j)−i j −1)wθ( j)+2(il( j)−i j −1)+1,
{

i f m − 1 ≥
θ( j) + 2(il( j) − i j − 1)

,

w2
θ( j)+2(il( j)−i j )+s ≤ wθ( j)+2(il( j)−i j )+s−1u

αil( j)+s t
βil( j)+s x

γil( j)+s ,
{

for all s = 1, . . . ,

i j+1 − il( j) − 1

− − − − − − − − − − − − − − − − − − − − − − − − − − − − −−
x2 ≤ wmd.

(23)

where θ = (θ( j))c
j=1 such that θ( j) = 2#{i : αi + βi + γi ≥ 2, 1 ≤ i ≤ i j } + #{i :

αi + βi + γi ≤ 1, 1 ≤ i ≤ i j } for j = 1, ..., c, m = 1 + 2#{i : αi + βi +
γi ≥ 2, 1 ≤ i < k − 1} + #{i : αi + βi + γi ≤ 1, 1≤i < k − 1} ≤ 2k and

d =
{

wm−1 if αk−1 + βk−1 + γk−1 = 0
uαk−1 tβk−1 xγk−1 if αk−1 + βk−1 + γk−1 = 1

. Conversely, if (x, t, u, w) is a

solution of (22) or (23) then (x, t, u) is a feasible solution of (17).

Proof To get the expressions of any of the systems (22) or (23), we discuss the decom-
position (19), (20), (21) of s, r − s and 2k − r in the basis B = {2l}, l = 0, ..., k − 1.

Since 2k = 2k − r + (r − s) + s, we observe that (19)+(20)+(21) gives a decom-
position of 2k in power of 2 summands with coefficients less than or equal than 3.
Namely,
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2k = (αk−1 + βk−1 + γk−1)2
k−1 + . . . + (α1 + β1 + γ1)2

1 + (α0 + β0 + γ0)2
0.

(24)

We discuss two cases depending on the parity of r .
If r is even then s is odd since gcd(r, s) = 1, thus r − s is odd and 2k − r is even.
If r is odd then s can be odd or even; if s is odd then r − s is even and 2k − r is

odd; otherwise r − s is odd and 2k − r is odd.
From the above discussion, we observe that there are always two odd and one even

numbers in the triplet (s, r − s, 2k − r). Therefore, we conclude that

α0 + β0 + γ0 = 2.

On the other hand, since
k−1∑

i=0

2i = 2k − 1, then another representation of 2k is:

2k = 1.2k−1 + 1.2k−2 + . . . + 1.21 + 2.20. (25)

Considering the fact that (25) and (24) are two representations of 2k , by equating
coefficients, we deduce some properties of the sums (αi + βi + γi ), i = 1, ..., k − 1.

• First of all, we observe that αk−1 + βk−1 + γk−1 can only assume the values 0 or 1.
• Second, since α0 +β0 +γ0 = 2 then it implies that α1+β1+γ1 = 1 or 3, otherwise

if α1 + β1 + γ1 = 0 or 2, then we will get 0.21 = 0 or 2.21 = 22 which means
that we can not recover the term 21 and then we will not get the decomposition as
in (25).

• Third, let i0 be the first index, counting in a decreasing order from k − 1 to 1, so
that αi0 + βi0 + γi0 �= 1 and ∀ i, i0 < i ≤ k − 1 we have αi + βi + γi = 1. Then
three cases can occur:
1. if αi0 + βi0 + γi0 = 3, then

2k = 1.2k−1 + ... + 1.2i0+1+3.2i0 +(αi0−1+βi0−1+γi0−1)2
i0−1+... + 2.20,

= 1.2k−1 + ... + 2.2i0+1+1.2i0 +(αi0−1+βi0−1+γi0−1)2
i0−1+... + 2.20,

...

= 2.2k−1 + ... + 0.2i0+1+1.2i0 +(αi0−1+βi0−1+γi0−1)2
i0−1+... + 2.20,

which it is not possible and therefore it implies that αi0 + βi0 + γi0 = 2 or 0.

2. if αi0 + βi0 + γi0 = 2, then

2k = 1.2k−1 + ... + 1.2i0+1+2.2i0 +(αi0−1+βi0−1+γi0−1)2
i0−1+... + 2.20,

= 1.2k−1 + ... + 2.2i0+1+0.2i0 +(αi0−1+βi0−1+γi0−1)2
i0−1+... + 2.20,

...

= 2.2k−1 + ... + 0.2i0+1+0.2i0 +(αi0−1+βi0−1+γi0−1)2
i0−1+... + 2.20,
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which again it is not possible and therefore it implies that αi0 + βi0 + γi0 = 0.

From the above two cases, we summarize that the first sum αi0 + βi0 + γi0 �= 1
must be necessarily αi0 + βi0 + γi0 = 0. Based on this we consider the only
possible case.

3. if αi0 +βi0 +γi0 = 0, then it must exist i1 < i0, satisfying that αi1 +βi1 +γi1 = 3
and such that for all k, i1 < k ≤ i0, αk + βk + γk = 2. Indeed,
(a) if αi0−1 + βi0−1 + γi0−1 = 1, then

2k = 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i−1 + ... + 2.20,

= 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + 1.2i0−1 + ... + 2.20.

Hence, since the sums α j + β j + γ j ≤ 3 for all j , one cannot recover the
sum 2k in (25) and the representation of 2k would be wrong.

(b) if αi0−1 + βi0−1 + γi0−1 = 3, then

2k = 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

= 1.2k−1 + ... + 0.2i0 + 3.2i0−1 + ... + 2.20,

= 1.2k−1 + ... + 1.2i0 + 1.2i0−1 + ... + 2.20.

The representation of 2k would be valid until the term i0 − 1 and we can
repeat the argument with the next element whose coefficient is different in
the representation of 2k in (24) and (25).

(c) if αi0−1 + βi0−1 + γi0−1 = 2, then

2k = 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

= 1.2k−1 + ... + 0.2i0 + 2.2i0−1 + ... + 2.20,

= 1.2k−1 + ... + 1.2i0 + 0.2i0−1 + ... + 2.20,

This way we get that the representations of 2k are equal until the term i0.
Next, to recover the term 2i0−1 then αi0−2 + βi0−2 + γi0−2 = 2 or 3 so that
we are in cases (b) or (c) and we repeat until we get the decomposition (25).

The analysis above justifies that the only possible cases in any representation of 2k

in the form (2k − r) + (r − s) + s and each of the addends (2k − r, r − s and s) in
the basis B = {2l}, l = 0, . . . , k − 1 are those that correspond to cases 1 or 2 in the
statement of the lemma.

Let m denote the number of inequalities in any of the systems (22) or (23). First
of all, we observe that the last inequality has a common form in any of the systems,
namely x2 ≤ wmd. Indeed, if αk−1 + βk−1 + γk−1 = 0 then we shall consider the
inequality

x2 ≤ wmwm−1 (26)

otherwise i.e if αk−1 + βk−1 + γk−1 = 1 then we shall consider the inequality

x2 ≤ wmuαk−1 tβk−1 xγk−1 . (27)
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Based on the above observation, we have that the systems (22) and (23) always
include (26) or (27) and other inequalities depending on the cases. Let us analyze the
two cases.

Case 1 Let (x, t, u) be a solution of system (18) and αi + βi + γi = 1 for all
0 < i < k−1. Setw1 = √

uα0 tβ0 xγ0 andwi+1 = √
wi uαi tβi xγi , i = 2, . . . , k−2.

Clearly, (x, t, u, w) is a solution of system (22). Conversely, if (x, t, u, w) is a
solution of system (22) then propagating backward from the last inequality to the
first one we prove that (x, t, u) is also a feasible solution of (18).
Finally, it is clear that in this case, m, the number of inequalities necessary to
represent (18) as system (22) is m = k − 1.
Case 2 Let (x, t, u) be a solution of system (18) and αi + βi + γi for all 0 <

i < k − 1 satisfying the hypotheses of Item 2. in the thesis of the lemma. Set
w1 = √

uα0 tβ0 xγ0 and wi+1 for i = 2, . . . , m being defined recursively according
to the inequalities in (27) from the previous values of w j , j = 1, . . . , i , and u, t, x .
Clearly, (x, t, u, w) is a solution of system (22).
Conversely, if (x, t, u, w) is a solution of system (27) then propagating backward
from the last inequality to the first one we prove that (x, t, u) is also a feasible
solution of (18).
We conclude the proof observing that the number of inequalities m in any of the
two representations is fixed and it is equal to m = 1 + 2#{i : αi + βi + γi ≥
2, 1≤i < k − 1} + #{i : αi + βi + γi≤1, 1≤i < k − 1} ≤ 2k. 
�

The reader should observe that the exclusion of the case τ = 2 does not means
any loss of generality since in this case r = 2, s = 1 and therefore the inequality
(17), namely x2 ≤ ut gives directly the representation without using the auxiliary w

variables.
We illustrate the application of the above lemma with the following example.

Example 1 Let us consider τ = 100000
70001 which in turns means that r = 105 and

s = 70001.

x100000 ≤ u70001t29999,

x217 = x131072 ≤ u70001t29999x31072.

The representations of the exponents of u, t, x in the inequality above in power of 2
summands are:

u : 70001 = 1.216 + 0.215 + 0.214 + 0.213 + 1.212 + 0.211 + 0.210 + 0.29 + 1.28

+ 0.27 + 1.26 + 1.25 + 1.24 + 0.23 + 0.22 + 0.21 + 1.20

t : 29999 = 0.216 + 0.215 + 1.214 + 1.213 + 1.212 + 0.211 + 1.210 + 0.29 + 1.28

+ 0.27 + 0.26 + 1.25 + 0.24 + 1.23 + 1.22 + 1.21 + 1.20

x : 31072 = 0.216 + 0.215 + 1.214 + 1.213 + 1.212 + 1.211 + 0.210 + 0.29 + 1.28

+ 0.27 + 1.26 + 1.25 + 0.24 + 0.23 + 0.22 + 0.21 + 0.20
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From the above decomposition, we realize that this example falls in case 2 and we
obtain c = 3. The table below shows the corresponding indexes of the w-inequalities
of each bloc i j , j = 1, 2, 3.

i1 = 5 i2 = 8 i3 = 12
il(1) = 7 il(2) = 9 il(3) = 15
θ(1) = 6 θ(2) = 11 θ(3) = 16

,

the total number of inequalities is m = 1 + 2 ∗ 6 + 9 = 22.

Then we get the decomposition
level 1 level 2 level 3 level 4 level 5
w2

1 ≤ ut w2
2 ≤ w1t w2

3 ≤ w2t w2
4 ≤ w3t w2

5 ≤ w4t

Bloc i1

level 6 level 7 level 8
w2

6 ≤ ut w2
8 ≤ w6u w2

10 ≤ w8w9

w2
7 ≤ w5x w2

9 ≤ w7x

Bloc i2

level 8 level 9 level 10
w2

10 ≤ w8w9 w2
11 ≤ ut w2

13 ≤ w11w12

w2
12 ≤ w10x

level 11 level 12
w2

14 ≤ w13t w2
15 ≤ w14x

Bloc i3

level 13 level 14 level 15 level 16
w2

16 ≤ ut w2
18 ≤ w16t w2

20 ≤ w18t w2
22 ≤ w20w21

w2
17 ≤ w15x w2

19 ≤ w17x w2
21 ≤ w19x

level 17
x2 ≤ w22u

From that set of inequalities one can easily obtain the original inequality by expand-
ing backward, starting from the last level (level 17). Indeed,

level 17 level 16 level 15 level 14

x2 ≤ w22u x22 ≤ u2w20w21 x23 ≤ u4t xw18w19 x24 ≤ u8t3x3w16w17

level 13 level 12 level 11

x25 ≤ u17t7x7w15 x26 ≤ u34t14x15w14 x27 ≤ u68t29x30w13
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level 10 level 9 level 8

x28 ≤ u136t58x60w11w12 x29 ≤ u273t117x121w10 x210 ≤ u546t234x242w8w9

level 7 level 6 level 5

x211 ≤ u1093t468x485w6w7 x212 ≤ u2187t937x971w5 x213 ≤ u4375t1874x1942w4

level 4 level 3 level 2

x214 ≤ u8750t3749x3884w3 x215 ≤ u17500t7499x7768w2 x216 ≤ u35000t14999x15536w1

level 1

x217 ≤ u70001t29999x31072

Remark 1 The particular case of the Euclidean norm (τ = 2) leads to a simpler
representation based on a direct application of Schur complement.

Observe that the constraint z2
i ≥ ω2

i ‖x − ai‖2
2 = ω2

i

d∑

j=1

(x j − ai j )
2, i = 1, ..., n can

be written as Li � 0, being

Li =

⎛

⎜
⎜
⎜
⎝

zi − ωi (x1 − ai1) ωi (x2 − ai2) · · · ωi (xd − aid)

ωi (x2 − ai2) zi + ωi (x1 − ai1) 0
...

. . .

ωi (xd − aid) 0 zi + ωi (x1 − ai1)

⎞

⎟
⎟
⎟
⎠

.

(Recall that for a symmetric matrix A, A � 0 means A to be positive semidefinite.)

Next, based on Lemma 1 we can state the final representation result for the family
of convex ordered continuous single facility location problems. This result is rather
useful because reduces this family of problem to SDP and therefore, it will allow us
to prove convergence results for solving them.

Theorem 2 For any set of lambda weights satisfying λ1 ≥ ... ≥ λn and τ = r
s such

that r, s ∈ N \ {0}, r > s and gcd(r, s) = 1, Problem (1) can be represented as a
semidefinite programming problem with n2 +n(2d +1) linear constraints and at most
4nd log r positive semidefinite constraints.

Proof Using Theorem 1 we have that Problem (1) is equivalent to Problem (2)–(8).
Then, we use Lemma 1 to represent each one of the inequalities (6) for each i, j ,

as a system of at most 2 log r inequalities of the form (22) or (23). Next, we observe
that all the inequalities that appear in (22) or (23) are of the form a2 ≤ bc, involving 3
variables, a, b, c with b, c non negative. Finally, it is well-known by Schur complement
that

a2 ≤ bc ⇔
⎛

⎝
b + c 0 2a

0 b + c b − c
2a b − c b + c

⎞

⎠ � 0, b + c ≥ 0.
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Hence, Problem (1) is a SDP because it has a linear objective function, n2 +n(2d +1)

linear inequalities and at most 2nd log(r) linear matrix inequalities. 
�
There is an interesting observation that follows from the above result. It was already

known that continuous convex ordered location problems with �1 norm were reducible
to linear programming (see e.g. [42]). This paper proves that most continuous convex
ordered location problems with �p norms are reducible to SDP programming showing
the similarities existing between all this class of problems and moreover that convex
continuous single facility location problems are among the “easy” optimization prob-
lems. Moreover, since the inequalities that appear in Problem (2)–(8) are either linear

or of the form a2 ≤ bc, which can be equivalently written as
∥
∥
∥
(

2a
b − c

)∥
∥
∥

2
≤ b + c, we

conclude that these problems can be also cast, indeed, as second-order conic program-
ming problems (SOCP). We shall compare the performance of our model implemented
as SDP or SOCP in Sect. 4 within the computational experience.

Finally, Theorem 2 allows us to apply the general theory of conic programming
to derive a general result of convergence for solving the family of continuous convex
ordered single facility location problems: Problem (1) is polynomially solvable in
dimension d ∈ N and for any set of nonincreasing lambda weights. Moreover, we can
be more precise and can state the following result:

Theorem 3 Let ε > 0 be a prespecified accuracy and (X0, S0) be a feasible primal-
dual pair of initial solutions of Problem (2–8). An optimal primal-dual pair (X, S)

satisfying X · S ≤ ε can be obtained in at most O(α log X0·S0

ε
) iterations and the

complexity of each iteration is bounded above by O(αβ3, α2β2, α2) being α = 3n +
2nd(1 + log r) and β = p, the dimension of the dual matrix variable Sp.

The reader may observe that this result is mainly of theoretical interest because the
bound is based on general results on primal-dual algorithms, such as the modification of
Kouleai and Terlaki [33] to the Mehrota type algorithm [38] applied to SDP problems.
Nevertheless, it is important to realize that it states an important difference with respect
to any other known result in the area of continuous location where convergence results,
when available, are only proven limit of sequences and never in finite number of steps
nor accuracy ensured. In this case, one can ensure a prespecified accuracy of the
solution in a known number of iterations.

3 Constrained ordered median problems

This section extends the above results to constrained location problems. Therefore,
we address now the restricted case of Problem (1). The reader may observe that
this extension is rather interesting from the application point of view since in most
occasions location problems are not unconstrained. Nevertheless, it is far from trivial
as can be seen by the few exact algorithms that exist in the literature for continuous
ordered median location problems with additional constraints. (The interested reader
is referred to [19,20] and the references therein for further details.)

In order to present this approach, we need to describe our framework. Let
{g1, . . . , gl} ⊂ R[x] be real polynomials and K := {x ∈ Rd : g j (x) ≥ 0, j =

123



578 V. Blanco et al.

1, . . . , l} a basic closed, compact semialgebraic set with nonempty interior satisfy-
ing the Archimedean property. Recall that the Archimedean property is equivalent to
imposing that for some M > 0 the quadratic polynomial u(x) = M − ∑d

i=1 x2
i has a

representation on K as u = σ0 + ∑�
j=1 σ j g j , for some {σ0, . . . , σl} ⊂ R[x] being

each σ j sum of squares [48]. We remark that the assumption on the Archimedean
property is not restrictive at all, since any semialgebraic set K ⊆ Rd for which is
known that

∑d
i=1 x2

i ≤ M holds for some M > 0 and for all x ∈ K, admits a new

representation K′ = K ∪ {x ∈ Rd : gl+1(x) := M −∑d
i=1 x2

i ≥ 0} that trivially veri-
fies the Archimedean property. In our framework the compactness assumption which
is usually assumed in location analysis implies that this condition always holds.

In this framework we assume that the domain K is compact and has nonempty
interior. We observe that we can extend the results in Sect. 2 to a broader class of
convex constrained problems.

In order to do that we need to introduce some notations. Let κ = (κα) be a real
sequence indexed in the monomial basis (xβ zγ vδwζ uη yθ ) of R[x, z, v, w, u, y] (with
α = (β, γ, δ, ζ, η, θ) ∈ Nd ×Nn ×Nn ×Nn ×Nn×d ×Nn×d ). Let D = 3n+(2n+1)d
denotes the dimension of the space of variables. Define ϒ = (x, z, v, w, u, y) to be
the vector of indeterminates so that ϒα = xβ zγ vδwζ uη yθ . For any integer N consider
the monomial vector

[ϒ N ]=[(x, z, v, w, u, y)N ]=[1, x1, . . . xd , z1, . . . zn, . . . , ynd , x2
1 , x1x2, . . . , yN

nd ]t .

Then, [ϒ N ][ϒ N ]t is a square matrix and we write

[ϒ N ][ϒ N ]t =
∑

0≤|α|≤2N

A0
αϒα

for some symmetric 0/1 matrices A0
α . Here, for a vector α, |α| stands for the sum of

its components.
For any sequence, κ = (κα)α∈ND ⊂ R, indexed in the canonical monomial basis

B, let Lκ : R[ϒ] → R be the linear functional defined, for any f = ∑
α∈Nd fα ϒα ∈

R[ϒ], as Lκ ( f ) := ∑
α fα κα .

The moment matrix MN (κ) of order N associated with κ , has its rows and columns
indexed by (ϒα) and MN (κ)(α, α′) := Lκ (ϒα+α′

) = κα+α′ , for |α|, |α′| ≤ N .

Therefore,

MN (κ) =
∑

0≤|α|≤2N

A0
ακα

Note that the moment matrix of order N has dimension

(
D + N

D

)

×
(

D + N
D

)

and that there are

(
D + 2N

D

)

κα variables.

For g ∈ R[ϒ] (= ∑
ν∈NM gνϒ

ν), the localizing matrix MN (gκ) of order N asso-
ciated with κ and g, has its rows and columns indexed by (ϒα) and MN (gκ)(α, α′) :=
Lκ (ϒα+α′

g(ϒ)) = ∑
ν gνκν+α+α′ , for |α|, |α′| ≤ N . Therefore,
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MN (gκ) =
∑

0≤|α|≤2N

Ag
ακα,

for some symmetric 0/1 matrices Ag
α that depend on the polynomial g. Also for

convenience, we shall denote by Ag
ei the matrix associated with κei the moment variable

linked to the monomial xei = x1
i . (The interested reader is referred to [34,35] for

further details on the moment approach applied to global optimization.)
The following result states sufficient conditions ensuring that the constrained

ordered median problem can be solved similarly to the unconstrained one using an
alternative SDP approach.

Theorem 4 Consider the restricted problem:

min
x∈K⊂Rd

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ . (28)

Assume that the hypothesis of Theorem 2 holds. In addition, any of the following
conditions holds:

1. gi (x) are concave for i = 1, . . . , � and −∑�
i=1 μi∇2gi (x) � 0 for each dual

pair (x, μ) of the problem of minimizing any linear functional ct x on K (Positive
Definite Lagrange Hessian (PDLH)).

2. gi (x) are sos-concave on K for i = 1, . . . , � or gi (x) are concave on K and strictly
concave on the boundary of K where they vanish, i.e. ∂K∩∂{x ∈ Rd : gi (x) = 0},
for all i = 1, . . . , �.

3. gi (x) are strictly quasi-concave on K for i = 1, . . . , �.

Then, there exists a constructive finite dimension embedding, which only depends on
τ and gi , i = 1, . . . , �, such that (28) is a semidefinite problem.

Proof The unconstrained version of Problem (28) can be equivalently written as a SDP
using the result in Theorem 2. Therefore, it remains to prove that under the conditions
1, 2 or 3 the constraint set x ∈ K is also exactly represented as a finite number of
semidefinite constraints or equivalently that it is semidefinite representable (SDr).

Let us begin with condition 1. Consider the system of linear matrix inequalities:

A(k)
0 +

�∑

i=1

Agk
ei xi +

∑

1≤α≤2N

Agk
α κα � 0, k = 0, . . . , �. (29)

Under the hypothesis of condition 1, the set K satisfies the Putinar-Prestel’s Bounded
Degree Nonnegative Representation property (PP-BDNR), see [26, Theorem 6]. This
condition ensures that there exists a finite N such that the set

ŜN = {(x, κ) : satisfying inequalites (29)}
projects via the x coordinate onto the set K. Hence, an exact lifted representation of
Problem (28) is the one provided by Theorem 2 augmented with the additional linear
matrix inequalities in (29).
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Let us assume now that condition 2 holds. Consider the set

ŜN = {(x, κ) : MN (κ) � 0, Lκ (gi ) ≥ 0, i = 1 . . . , �,

Lκ (x j ) = x j , j = 1, . . . , d, κ0 = 1}.

Under our hypothesis, Theorem 11.11 in [35] ensures that there exists a finite N
such that ŜN projects via the x variables onto the set K. Hence, we obtain another lifted
exact SDP formulation for Problem (28) using the formulation induced by Theorem
2 augmented with the inequalities MN (κ) � 0, Lκ (gi ) ≥ 0, i = 1 . . . , �, Lκ (x j ) =
x j , j = 1, . . . , d, κ0 = 1.

Finally, let us consider the case in condition 3. If gi are strictly quasi-concave on
K, Proposition 10 in [26] implies that one can find some new polynomials −pi that
have positive definite Hessian in K. Let us denote P := {x ∈ Rd : pi (x) ≥ 0, i =
1, . . . , �}. Thus, in some open set U containing K it holds P ∩ U = K.

Next, define the set

ŜN = {(x, κ) : satisfying inequalites (30)–(33)}

where the set of linear matrix inequalities (30)–(33) are given by:

A(k)
0 +

�∑

i=1

A(k)
ei

xi +
∑

1≤α≤2N

Apk
α κα � 0, k = 0, . . . , � (30)

Lκ (pk) ≥ 0, k = 0, . . . , � (31)

Lκ (x j ) = x j , j = 1, . . . , d (32)

κ0 = 1. (33)

Under the hypothesis of condition 3, Theorem 24 in [26] ensures that there exists
a finite N such that ŜN projects via the x variables onto K. Hence, we obtain the
third lifted exact SDP formulation for Problem (28) using the formulation induced by
Theorem 2 augmented with the inequalities (30)–(33).

We observe that according to Theorem 29 in [26], since we assume the Archimedean
property holds in all these cases, N can be bounded above by some finite constant that
only depends on the polynomials gi , i = 1, . . . , �. 
�

The above result extends the SDP analysis to some classes of constrained, convex
ordered median problems. However, it can be extended further, with some different
tools borrowed from the Theory of Moments [35], to more general cases. We shall
finish this section with another convergence result applicable to the case of non-convex
constrained location problems. Again, let {g1, . . . , gl} ⊂ R[x] and K := {x ∈ Rd :
gk(x) ≥ 0, k = 1, . . . , �} a basic, compact, closed semialgebraic set satisfying the
Archimedean property, with nonempty interior and such that K does not satisfy the
hypothesis of Theorem 4, in particular some of the g j may not be concave.

Now, we can prove a convergence result that allows us to approximate, up to any
degree of accuracy, the solution of the class of problems defined in (28) when the
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hypothesis of Theorem 4 fails. Let ξk := �(deg gk)/2� where {g1, . . . , g�} are the
polynomial constraints that define K. For N ≥ N0 := max{ max

k=1,...,�
ξk, 1}, we intro-

duce the following hierarchy of semidefinite programs:

(QN ) : min
n∑

k=1

vk +
n∑

i=1

wi (34)

s.t. vi + wk ≥ λk zi , ∀i, k = 1, ..., n, (35)

yi j − x j + ai j ≥ 0, ∀i = 1, ..., n, j = 1, ..., d. (36)

yi j + x j − ai j ≥ 0, ∀i = 1, ..., n, j = 1, ..., d.

yr
i j ≤ us

i j z
r−s
i , ∀i = 1, ..., n, j = 1, ..., d, (37)

ω
r
s
i

d∑

j=1
ui j ≤ zi , ∀i = 1, ..., n, (38)

MN (κ) � 0, (39)

MN−ξk (gk, κ) � 0, k = 1, . . . , �, (40)

Lκ(x j ) = x j , j = 1, . . . , d,

Lκ(zi ) = zi , i = 1, . . . , n,

Lκ(vi ) = vi , i = 1, . . . , n,

Lκ(wi ) = wi , i = 1, . . . , n,

Lκ(ui j ) = ui j , i = 1, . . . , n, j = 1, . . . , d,

Lκ(yi j ) = yi j , i = 1, . . . , n, j = 1, . . . , d,

κ0 = 1

ui j ≥ 0, ∀ i = 1, ..., n, j = 1, . . . , d. (41)

with optimal value denoted min QN .

Theorem 5 Consider ρλ defined as the optimal value of the problem:

ρλ = min
x∈K⊂Rd

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ . (42)

Then, with the notation above:

(a) min QN ↑ ρλ as N → ∞.
(b) Let κ N be an optimal solution of Problem (QN ). If

rank MN (κ N ) = rank MN−N0(κ
r ) = ϑ

then min QN = ρλ and one may extract ϑ points

(x∗(i), z∗(i), v∗(i), w∗(i), u∗(i), y∗(i))ϑi=1 ⊂ K,

all global minimizers of Problem (42).
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Proof First of all, we observe that an optimal solution of Problem (42) does exist
by the compactness assumption on K. Moreover, the convergence of the semidefinite
sequence of problems (QN ) follows from a result by Lasserre [35, Theorem 5.6] that
it is applied here to the SDP problem (2–8) on the closed semialgebraic set K. The
second assertion on the rank condition, for extracting optimal solutions, follows from
applying [35, Theorem 5.7] to Problem (QN ). 
�

4 Computational experiments

A series of computational experiments have been performed in order to evaluate
the behavior of the proposed methodology. Programs have been coded in MATLAB
R2010b and executed in a PC with an Intel Core i7 processor at 2x 2.93 GHz and 16 GB
of RAM. The problems have been solved by calling SeDuMi 3.01 [51], using either
the SDP or the SOCP internal algorithm implemented in this solver. Therefore, our
CPU times (Time(Ave)) and accuracies/gaps (Gap(Ave)) reported in the tables
are referred to this solver.

We run the algorithm for several well-known continuous single facility convex
ordered location problems: Weber, center, k-center and general ordered median prob-
lem with random non-increasing monotone lambda. For each of them, we obtain the
CPU times for computing solutions as well as the accuracy given by the solver SeDuMi
3.01 (see Tables 1, 2, 3, 4, that for the ease of presentation are collected at the end of the
paper). The reader may observe that since this approach is exact, this accuracy (gap)
is the one reported by the solver due to its internal precision. In addition, to illustrate
the application of the result in Theorem 5, we also report results on a problem which
consists of minimizing the range of distances in R3 with two additional non-convex
constraints. In this case, we include running times and gap with respect to upper bounds
obtained with the battery of functions in optimset of MATLAB which only provide
approximations on the exact solutions (optimality cannot be certified).

In this last case, in order to compute the accuracy of an obtained solution, we use
the following measure for the error (see [53]):

εobj = |the optimal value of the SDP − fopt|
max{1, fopt} , (43)

where fopt is the approximated optimal value obtained with the functions in
optimset.

The reader may note that in this case we solve relaxed problems that give lower
bounds. Therefore, the gap of our lower bounds is computed with respect to upper
bounds (the solution reported by optimset is a heuristic solution) which implies
that actually may be even better than the one reported (see Table 5).

We have organized our computational experiments in four different problems types,
namely Weber, center, k-centrum and general λ; and for each of them we compare the
performance of our model using the SDP or the SOCP approach. Our test problems are
set of points randomly generated on the [0, 10000] hypercubes of the d-dimensional
space, d = 2, 3, 10. For Weber, center and k-centrum problems, we could solve, at
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Table 5 Computational results
for the range problem with two
nonconvex constraints

d

3

τ n Time(Ave) Gap(Ave)

2 10 0.46 0.00001623

100 9.45 0.00457982

500 80.56 0.00030263

1,000 204.96 0.00094492

least with one of the approaches (SDP or SOCP), instances with at least 10,000 points
for the different �τ -norms, τ = 1.5, 2, 3, 3.5. The general case with random lambda
weights is harder and we only solved in all cases instances up to 1,000 points.

Our goal is to present the results organized per problem type, framework space
(Rd , d = 2, 3, 10), norm (�τ , τ = 1.5, 2, 3, 3.5) and distinguishing whether we
apply SDP or SOCP algorithms (SDP or SOCP columns). Tables 1, 2 and 3 report
our results on the problems of minimizing the weighted sum of distances (Weber), the
maximum distance (center) and the sum of the n/2 largest distances (n/2-centrum).
In all cases, the accuracy and resolutions times needed for the solver are rather good,
even for 10,000 points in dimension 10 and rather complicated norms (e.g. �3.5). In
our tables we have used the notation “ < 10−a ” to indicate an accuracy greater than
10−a . The reader can see that the hardest type is the k-centrum. In this problem type
CPU times increase one order of magnitude because the structure of the problem does
not allow to reduce the size of the formulation.

Table 4 reports our results on the general ordered median problem with non-
increasing monotone lambda weights. For this family of problems we could solve
with our general formulation and the SDP approach, in all cases, problem sizes of
1,000 points. Accuracy is rather good and the bottleneck here is the size of the formu-
lation to be handle since the fact that all lambda are non-null makes it impossible to
simplify the representation.

Comparing the performance of the SDP versus SOCP representations of our model,
we observe that if the number of points is less than or equal to n = 100, SOCP approach
results in better CPU times for all problem types, dimension and norm as expected
by the theoretical worst-case complexity of SOCP. If the number of demand points
n = 500 then SOCP is better that SDP in dimensions d = 2, 3. For more that 500
demand points, with the exception of norm �2, SDP approach gives better CPU times
and gaps than SOCP in all problems. Moreover, SOCP fails to properly solve, either
due to numerical errors or lack of memory, most instances with n = 5, 000, 10, 000
and several with n = 1, 000; depending on the dimension d and problem type. This is
shown in the tables with the symbol NaN (Not a Number) that is flag reported by the
solver. It is important to remark that our comparison is based on a specific solver, we
have chosen SeDuMi since it has the feature to solve both SDP and SOCP. (SDPT3 [32]
performs similarly.) The explanation for a better performance of the SDP reformulation
versus the SOCP one, for large size instances, may be due to the fact that, as reported for
instance by Mittelmann [36], SeDuMi is able to exploit sparsity patterns in structured
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problems for SDP problems. (The reader may observe that location problems exhibit
well-known sparsity patterns.) The better implementation of SeDuMi for SDP than
for SOCP problems seems to compensate, for large size instances, the best worst case
complexity of the SOCP algorithm (see Tables 1, 2, 3, 4). Needless to say that our
results may depend on the solver and the internal algorithms that are implemented and
one could obtain also better results with the SOCP reformulation, even for larger size
instances, using a specialized SOCP solver.

Finally, we also report in Table 5, for the sake of illustration, an example of appli-
cation of the result in Theorem 5. This problem consists of the minimization of the
difference between the maximum and minimum distances of a number of demand
points (n ranging between 10 and 1,000) with respect to a solution point that must
belong to a non-convex feasible region defined by the following two non-convex con-
straints x2

1 − 2x2
2 − 2x2

3 ≥ 0 and −2x2
1 + 5x2

2 + 4x2
3 ≥ 0 within the unit cube.

Clearly, this case is more difficult to solve since this problem is non-convex and
thus, we need to resort to the hierarchy of relaxations introduced in Theorem 5. Nev-
ertheless, we have obtained good results in this case even with the first relaxation
order.

4.1 Comparisons

In this section we report some partial comparative analysis of our algorithm with some
others that have previously appeared in the literature. As we mentioned in the intro-
duction, this comparison is not easy since most available algorithms for the ordered
median problem are only applicable on the plane and with Euclidean norm (�2), with
the only exception of [2] that also reports some results in R3. In addition, the different
lambda parameters reported in those papers are not always the same or they are not
applicable under the hypothesis of this paper. For instance, [24] reports only k-centrum
and non-increasing lambda instances, [21] reports results for Weber, k-centrum and
non-increasing lambda instances, whereas [2] does it for Weber, center and k-centrum,
but does not report results for non-increasing lambda parameters.

Therefore, in order to have a meaningful comparative of methods we have selected
different results from the above mentioned papers and we have organized them so that
comparisons are as simple as possible.

In Table 6, we compare the results of the algorithms in Drezner and Nickel [21]
(DN09), Espejo et al. [24], (ERV09), and the one in this paper (New) in terms of their
CPU times on different instance sizes. The data that can be compared correspond to
number of points ranging between n =100, 500, 1,000, and problem types Weber,
k-centrum and non-increasing random lambda. These data appear in the three papers
with the only exception of those for Weber problem that are not considered in [24]
and therefore are marked as N/A in Table 6.

In addition, we also compare the results in this paper with those provided by the
algorithm in [2], (BHP12), that is the only one that works for ordered median problems
in dimension higher than 2. In this case, we report comparisons for τ = 2, 3 and
dimensions d = 2, 3 for problem types Weber, center and k-centrum. (All the data
have been taken from those reported by the authors in the papers.)
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Table 6 Comparison DN09,
ERCV09 and New for Weber,
k-centrum and random in
dimension d = 2 and τ = 2

Algorithm

n Problem DN09 ERV09 New

100 Weber 0.47 N/A 0.05

k-centrum 0.39 1.76 0.13

Random 7.13 0.79 0.31

500 Weber 7.28 N/A 0.12

k-centrum 3.99 5.63 0.68

Random 85.56 4.69 12.88

1,000 Weber 27.69 N/A 0.42

k-centrum 15.04 25.32 3.71

Random 340.2 17.17 100.51

Table 7 Comparison between BHP09 and New for Weber, center and k-centrum problems and τ = 2, 3

R
2

R
3

τ τ

2 3 2 3
n Problem BHP12 New BHP12 New BHP12 New BHP12 New

100 Weber 3.55 0.05 5.21 1.77 4.79 0.07 7.32 3.60

Center 30.83 0.05 34.07 0.28 48.51 0.05 57.85 0.48

k-centrum 37.58 0.13 34.41 0.66 52.52 0.10 53.87 1.46

500 Weber 17.74 0.12 27.46 10.82 25.32 0.14 37.22 17.87

Center 305.36 0.09 299.41 14.47 566.29 0.10 600.27 34.85

k-centrum 285.02 0.68 291.8 41.43 452.85 0.48 449.46 72.35

1,000 Weber 39.82 0.42 58.32 21.73 56.86 0.48 84.06 33.99

Center 736.25 0.11 864.93 28.93 1494.76 0.16 1606.89 119.96

k-centrum 666.2 3.71 729.3 100.17 1149.9 2.13 1280.1 145.24

From Table 6, we observe that ERCV09 specifically designed to work in dimension
2 is faster than ours; but only for random lambda parameters and when the number
of considered points increases. This could have been expected since ERV09 takes
explicit advantage of the geometry of the plane building explicitly planar bisectors
among points. The reader should observe that this techniques is not applicable in
higher dimensions because there are no algorithms to compute bisectors in dimension
d > 2. On the other hand, New ensures a very high accuracy whereas the other two
algorithms are heuristic and the precision with respect to the actual optimal solution
is difficult to ensure.

Analyzing Table 7, we see that theNew algorithm is much faster thanBHP12which
is the only one valid in higher dimensions. Again, this is not surprising since BHP12
is based on global optimization techniques solving series of SDP relaxations which
makes it applicable to even non-convex cases at the price of being slower and limited
in problem size.
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5 Conclusions

We develop a unified tool for minimizing convex ordered median location problems
in finite dimension and with general �τ -norms. We report computational results that
show the powerfulness of this methodology to solve medium size continuous location
problems.

This new approach solves a broad class of convex and non-convex continuous loca-
tion problems that, up to date, were only partially solved in the specialized literature.
We have tested this methodology with some medium size standard ordered median
location problems in different dimensions and with different norms.

It is important to emphasize that one of the contributions of our approach is that
the same algorithm is used to solve all this family of location problems. This is an
interesting novelty as compared with previous approaches, of course at the price of
loosing some speed in the computations compared with some tailored algorithms for
specific problems. Obviously, our goal was not to compete with previous algorithms
since most of them are either designed for specific problems or only applicable for
planar problems. However, in all cases we obtained reasonable CPU times and accurate
results. Furthermore, in many cases our running times for many problems could not
be even compared with others since nobody had solved them before.
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